加载中...
工业蒸汽数据分析
发表于:2021-11-08 | 分类: 天池机器学习入门

导入数据探索的工具包

1
2
3
4
5
6
7
8
9
10
11
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

from scipy import stats

import warnings
warnings.filterwarnings("ignore")

%matplotlib inline

读取数据文件

使用Pandas库read_csv()函数进行数据读取,分割符为‘\t’

1
2
3
# 下载需要用到的数据集
!wget http://tianchi-media.oss-cn-beijing.aliyuncs.com/DSW/Industrial_Steam_Forecast/zhengqi_test.txt
!wget http://tianchi-media.oss-cn-beijing.aliyuncs.com/DSW/Industrial_Steam_Forecast/zhengqi_train.txt
1
2
3
4
5
train_data_file = "./zhengqi_train.txt"
test_data_file = "./zhengqi_test.txt"

train_data = pd.read_csv(train_data_file, sep='\t', encoding='utf-8')
test_data = pd.read_csv(test_data_file, sep='\t', encoding='utf-8')

查看训练集特征变量信息

1
train_data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2888 entries, 0 to 2887
Data columns (total 39 columns):
 #   Column  Non-Null Count  Dtype  
---  ------  --------------  -----  
 0   V0      2888 non-null   float64
 1   V1      2888 non-null   float64
 2   V2      2888 non-null   float64
 3   V3      2888 non-null   float64
 4   V4      2888 non-null   float64
 5   V5      2888 non-null   float64
 6   V6      2888 non-null   float64
 7   V7      2888 non-null   float64
 8   V8      2888 non-null   float64
 9   V9      2888 non-null   float64
 10  V10     2888 non-null   float64
 11  V11     2888 non-null   float64
 12  V12     2888 non-null   float64
 13  V13     2888 non-null   float64
 14  V14     2888 non-null   float64
 15  V15     2888 non-null   float64
 16  V16     2888 non-null   float64
 17  V17     2888 non-null   float64
 18  V18     2888 non-null   float64
 19  V19     2888 non-null   float64
 20  V20     2888 non-null   float64
 21  V21     2888 non-null   float64
 22  V22     2888 non-null   float64
 23  V23     2888 non-null   float64
 24  V24     2888 non-null   float64
 25  V25     2888 non-null   float64
 26  V26     2888 non-null   float64
 27  V27     2888 non-null   float64
 28  V28     2888 non-null   float64
 29  V29     2888 non-null   float64
 30  V30     2888 non-null   float64
 31  V31     2888 non-null   float64
 32  V32     2888 non-null   float64
 33  V33     2888 non-null   float64
 34  V34     2888 non-null   float64
 35  V35     2888 non-null   float64
 36  V36     2888 non-null   float64
 37  V37     2888 non-null   float64
 38  target  2888 non-null   float64
dtypes: float64(39)
memory usage: 880.1 KB

此训练集数据共有2888个样本,数据中有V0-V37共计38个特征变量,变量类型都为数值类型,所有数据特征没有缺失值数据; 数据字段由于采用了脱敏处理,删除了特征数据的具体含义;target字段为标签变量

1
2
test_data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1925 entries, 0 to 1924
Data columns (total 38 columns):
 #   Column  Non-Null Count  Dtype  
---  ------  --------------  -----  
 0   V0      1925 non-null   float64
 1   V1      1925 non-null   float64
 2   V2      1925 non-null   float64
 3   V3      1925 non-null   float64
 4   V4      1925 non-null   float64
 5   V5      1925 non-null   float64
 6   V6      1925 non-null   float64
 7   V7      1925 non-null   float64
 8   V8      1925 non-null   float64
 9   V9      1925 non-null   float64
 10  V10     1925 non-null   float64
 11  V11     1925 non-null   float64
 12  V12     1925 non-null   float64
 13  V13     1925 non-null   float64
 14  V14     1925 non-null   float64
 15  V15     1925 non-null   float64
 16  V16     1925 non-null   float64
 17  V17     1925 non-null   float64
 18  V18     1925 non-null   float64
 19  V19     1925 non-null   float64
 20  V20     1925 non-null   float64
 21  V21     1925 non-null   float64
 22  V22     1925 non-null   float64
 23  V23     1925 non-null   float64
 24  V24     1925 non-null   float64
 25  V25     1925 non-null   float64
 26  V26     1925 non-null   float64
 27  V27     1925 non-null   float64
 28  V28     1925 non-null   float64
 29  V29     1925 non-null   float64
 30  V30     1925 non-null   float64
 31  V31     1925 non-null   float64
 32  V32     1925 non-null   float64
 33  V33     1925 non-null   float64
 34  V34     1925 non-null   float64
 35  V35     1925 non-null   float64
 36  V36     1925 non-null   float64
 37  V37     1925 non-null   float64
dtypes: float64(38)
memory usage: 571.6 KB

测试集数据共有1925个样本,数据中有V0-V37共计38个特征变量,变量类型都为数值类型

查看数据统计信息

1
train_data.describe()
V0 V1 V2 V3 V4 V5 V6 V7 V8 V9 ... V29 V30 V31 V32 V33 V34 V35 V36 V37 target
count 2888.000000 2888.000000 2888.000000 2888.000000 2888.000000 2888.000000 2888.000000 2888.000000 2888.000000 2888.000000 ... 2888.000000 2888.000000 2888.000000 2888.000000 2888.000000 2888.000000 2888.000000 2888.000000 2888.000000 2888.000000
mean 0.123048 0.056068 0.289720 -0.067790 0.012921 -0.558565 0.182892 0.116155 0.177856 -0.169452 ... 0.097648 0.055477 0.127791 0.020806 0.007801 0.006715 0.197764 0.030658 -0.130330 0.126353
std 0.928031 0.941515 0.911236 0.970298 0.888377 0.517957 0.918054 0.955116 0.895444 0.953813 ... 1.061200 0.901934 0.873028 0.902584 1.006995 1.003291 0.985675 0.970812 1.017196 0.983966
min -4.335000 -5.122000 -3.420000 -3.956000 -4.742000 -2.182000 -4.576000 -5.048000 -4.692000 -12.891000 ... -2.912000 -4.507000 -5.859000 -4.053000 -4.627000 -4.789000 -5.695000 -2.608000 -3.630000 -3.044000
25% -0.297000 -0.226250 -0.313000 -0.652250 -0.385000 -0.853000 -0.310000 -0.295000 -0.159000 -0.390000 ... -0.664000 -0.283000 -0.170250 -0.407250 -0.499000 -0.290000 -0.202500 -0.413000 -0.798250 -0.350250
50% 0.359000 0.272500 0.386000 -0.044500 0.110000 -0.466000 0.388000 0.344000 0.362000 0.042000 ... -0.023000 0.053500 0.299500 0.039000 -0.040000 0.160000 0.364000 0.137000 -0.185500 0.313000
75% 0.726000 0.599000 0.918250 0.624000 0.550250 -0.154000 0.831250 0.782250 0.726000 0.042000 ... 0.745250 0.488000 0.635000 0.557000 0.462000 0.273000 0.602000 0.644250 0.495250 0.793250
max 2.121000 1.918000 2.828000 2.457000 2.689000 0.489000 1.895000 1.918000 2.245000 1.335000 ... 4.580000 2.689000 2.013000 2.395000 5.465000 5.110000 2.324000 5.238000 3.000000 2.538000

8 rows × 39 columns

1
test_data.describe()
V0 V1 V2 V3 V4 V5 V6 V7 V8 V9 ... V28 V29 V30 V31 V32 V33 V34 V35 V36 V37
count 1925.000000 1925.000000 1925.000000 1925.000000 1925.000000 1925.000000 1925.000000 1925.000000 1925.000000 1925.000000 ... 1925.000000 1925.000000 1925.000000 1925.000000 1925.000000 1925.000000 1925.000000 1925.000000 1925.000000 1925.000000
mean -0.184404 -0.083912 -0.434762 0.101671 -0.019172 0.838049 -0.274092 -0.173971 -0.266709 0.255114 ... -0.206871 -0.146463 -0.083215 -0.191729 -0.030782 -0.011433 -0.009985 -0.296895 -0.046270 0.195735
std 1.073333 1.076670 0.969541 1.034925 1.147286 0.963043 1.054119 1.040101 1.085916 1.014394 ... 1.064140 0.880593 1.126414 1.138454 1.130228 0.989732 0.995213 0.946896 1.040854 0.940599
min -4.814000 -5.488000 -4.283000 -3.276000 -4.921000 -1.168000 -5.649000 -5.625000 -6.059000 -6.784000 ... -2.435000 -2.413000 -4.507000 -7.698000 -4.057000 -4.627000 -4.789000 -7.477000 -2.608000 -3.346000
25% -0.664000 -0.451000 -0.978000 -0.644000 -0.497000 0.122000 -0.732000 -0.509000 -0.775000 -0.390000 ... -0.453000 -0.818000 -0.339000 -0.476000 -0.472000 -0.460000 -0.290000 -0.349000 -0.593000 -0.432000
50% 0.065000 0.195000 -0.267000 0.220000 0.118000 0.437000 -0.082000 0.018000 -0.004000 0.401000 ... -0.445000 -0.199000 0.010000 0.100000 0.155000 -0.040000 0.160000 -0.270000 0.083000 0.152000
75% 0.549000 0.589000 0.278000 0.793000 0.610000 1.928000 0.457000 0.515000 0.482000 0.904000 ... -0.434000 0.468000 0.447000 0.471000 0.627000 0.419000 0.273000 0.364000 0.651000 0.797000
max 2.100000 2.120000 1.946000 2.603000 4.475000 3.176000 1.528000 1.394000 2.408000 1.766000 ... 4.656000 3.022000 3.139000 1.428000 2.299000 5.465000 5.110000 1.671000 2.861000 3.021000

8 rows × 38 columns

上面数据显示了数据的统计信息,例如样本数,数据的均值mean,标准差std,最小值,最大值等

查看数据字段信息

1
train_data.head()
V0 V1 V2 V3 V4 V5 V6 V7 V8 V9 ... V29 V30 V31 V32 V33 V34 V35 V36 V37 target
0 0.566 0.016 -0.143 0.407 0.452 -0.901 -1.812 -2.360 -0.436 -2.114 ... 0.136 0.109 -0.615 0.327 -4.627 -4.789 -5.101 -2.608 -3.508 0.175
1 0.968 0.437 0.066 0.566 0.194 -0.893 -1.566 -2.360 0.332 -2.114 ... -0.128 0.124 0.032 0.600 -0.843 0.160 0.364 -0.335 -0.730 0.676
2 1.013 0.568 0.235 0.370 0.112 -0.797 -1.367 -2.360 0.396 -2.114 ... -0.009 0.361 0.277 -0.116 -0.843 0.160 0.364 0.765 -0.589 0.633
3 0.733 0.368 0.283 0.165 0.599 -0.679 -1.200 -2.086 0.403 -2.114 ... 0.015 0.417 0.279 0.603 -0.843 -0.065 0.364 0.333 -0.112 0.206
4 0.684 0.638 0.260 0.209 0.337 -0.454 -1.073 -2.086 0.314 -2.114 ... 0.183 1.078 0.328 0.418 -0.843 -0.215 0.364 -0.280 -0.028 0.384

5 rows × 39 columns

上面显示训练集前5条数据的基本信息,可以看到数据都是浮点型数据,数据都是数值型连续型特征

1
test_data.head()
V0 V1 V2 V3 V4 V5 V6 V7 V8 V9 ... V28 V29 V30 V31 V32 V33 V34 V35 V36 V37
0 0.368 0.380 -0.225 -0.049 0.379 0.092 0.550 0.551 0.244 0.904 ... -0.449 0.047 0.057 -0.042 0.847 0.534 -0.009 -0.190 -0.567 0.388
1 0.148 0.489 -0.247 -0.049 0.122 -0.201 0.487 0.493 -0.127 0.904 ... -0.443 0.047 0.560 0.176 0.551 0.046 -0.220 0.008 -0.294 0.104
2 -0.166 -0.062 -0.311 0.046 -0.055 0.063 0.485 0.493 -0.227 0.904 ... -0.458 -0.398 0.101 0.199 0.634 0.017 -0.234 0.008 0.373 0.569
3 0.102 0.294 -0.259 0.051 -0.183 0.148 0.474 0.504 0.010 0.904 ... -0.456 -0.398 1.007 0.137 1.042 -0.040 -0.290 0.008 -0.666 0.391
4 0.300 0.428 0.208 0.051 -0.033 0.116 0.408 0.497 0.155 0.904 ... -0.458 -0.776 0.291 0.370 0.181 -0.040 -0.290 0.008 -0.140 -0.497

5 rows × 38 columns

画箱形图探索数据

1
2
3
fig = plt.figure(figsize=(4, 6))  # 指定绘图对象宽度和高度
sns.boxplot(train_data['V0'],orient="v", width=0.5)

<AxesSubplot:xlabel='V0'>


png

1
2
3
4
5
6
7
8
# 画箱式图
column = train_data.columns.tolist()[:39] # 列表头
fig = plt.figure(figsize=(20, 40)) # 指定绘图对象宽度和高度
for i in range(38):
plt.subplot(13, 3, i + 1) # 13行3列子图
sns.boxplot(train_data[column[i]], orient="v", width=0.5) # 箱式图
plt.ylabel(column[i], fontsize=8)
plt.show()


png

查看数据分布图

查看特征变量‘V0’的数据分布直方图,并绘制Q-Q图查看数据是否近似于正态分布

1
2
3
4
5
6
plt.figure(figsize=(10,5))

ax=plt.subplot(1,2,1)
sns.distplot(train_data['V0'],fit=stats.norm)
ax=plt.subplot(1,2,2)
res = stats.probplot(train_data['V0'], plot=plt)


png

查看查看所有数据的直方图和Q-Q图,查看训练集的数据是否近似于正态分布

1
2
3
4
5
6
7
8
9
10
11
12
13
14
train_cols = 6
train_rows = len(train_data.columns)
plt.figure(figsize=(4*train_cols,4*train_rows))

i=0
for col in train_data.columns:
i+=1
ax=plt.subplot(train_rows,train_cols,i)
sns.distplot(train_data[col],fit=stats.norm)

i+=1
ax=plt.subplot(train_rows,train_cols,i)
res = stats.probplot(train_data[col], plot=plt)
plt.show()


png

由上面的数据分布图信息可以看出,很多特征变量(如’V1’,‘V9’,‘V24’,'V28’等)的数据分布不是正态的,数据并不跟随对角线,后续可以使用数据变换对数据进行转换。

对比同一特征变量‘V0’下,训练集数据和测试集数据的分布情况,查看数据分布是否一致

1
2
3
4
5
ax = sns.kdeplot(train_data['V0'], color="Red", shade=True)
ax = sns.kdeplot(test_data['V0'], color="Blue", shade=True)
ax.set_xlabel('V0')
ax.set_ylabel("Frequency")
ax = ax.legend(["train","test"])


png

查看所有特征变量下,训练集数据和测试集数据的分布情况,分析并寻找出数据分布不一致的特征变量。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
dist_cols = 6
dist_rows = len(test_data.columns)
plt.figure(figsize=(4*dist_cols,4*dist_rows))

i=1
for col in test_data.columns:
ax=plt.subplot(dist_rows,dist_cols,i)
ax = sns.kdeplot(train_data[col], color="Red", shade=True)
ax = sns.kdeplot(test_data[col], color="Blue", shade=True)
ax.set_xlabel(col)
ax.set_ylabel("Frequency")
ax = ax.legend(["train","test"])

i+=1
plt.show()


png

查看特征’V5’, ‘V17’, ‘V28’, ‘V22’, ‘V11’, 'V9’数据的数据分布

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
drop_col = 6
drop_row = 1

plt.figure(figsize=(5*drop_col,5*drop_row))

i=1
for col in ["V5","V9","V11","V17","V22","V28"]:
ax =plt.subplot(drop_row,drop_col,i)
ax = sns.kdeplot(train_data[col], color="Red", shade=True)
ax = sns.kdeplot(test_data[col], color="Blue", shade=True)
ax.set_xlabel(col)
ax.set_ylabel("Frequency")
ax = ax.legend(["train","test"])

i+=1
plt.show()


png

由上图的数据分布可以看到特征’V5’,‘V9’,‘V11’,‘V17’,‘V22’,‘V28’ 训练集数据与测试集数据分布不一致,会导致模型泛化能力差,采用删除此类特征方法。

1
2
drop_columns = ['V5','V9','V11','V17','V22','V28']
#合并训练集和测试集数据,并可视化训练集和测试集数据特征分布图

可视化线性回归关系

查看特征变量‘V0’与’target’变量的线性回归关系

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
fcols = 2
frows = 1

plt.figure(figsize=(8,4))

ax=plt.subplot(1,2,1)
sns.regplot(x='V0', y='target', data=train_data, ax=ax,
scatter_kws={'marker':'.','s':3,'alpha':0.3},
line_kws={'color':'k'});
plt.xlabel('V0')
plt.ylabel('target')

ax=plt.subplot(1,2,2)
sns.distplot(train_data['V0'].dropna())
plt.xlabel('V0')

plt.show()


png

查看所有特征变量与’target’变量的线性回归关系

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
fcols = 6
frows = len(test_data.columns)
plt.figure(figsize=(5*fcols,4*frows))

i=0
for col in test_data.columns:
i+=1
ax=plt.subplot(frows,fcols,i)
sns.regplot(x=col, y='target', data=train_data, ax=ax,
scatter_kws={'marker':'.','s':3,'alpha':0.3},
line_kws={'color':'k'});
plt.xlabel(col)
plt.ylabel('target')

i+=1
ax=plt.subplot(frows,fcols,i)
sns.distplot(train_data[col].dropna())
plt.xlabel(col)


png

查看特征变量的相关性

1
2
3
data_train1 = train_data.drop(['V5','V9','V11','V17','V22','V28'],axis=1)
train_corr = data_train1.corr()
train_corr
V0 V1 V2 V3 V4 V6 V7 V8 V10 V12 ... V29 V30 V31 V32 V33 V34 V35 V36 V37 target
V0 1.000000 0.908607 0.463643 0.409576 0.781212 0.189267 0.141294 0.794013 0.298443 0.751830 ... 0.302145 0.156968 0.675003 0.050951 0.056439 -0.019342 0.138933 0.231417 -0.494076 0.873212
V1 0.908607 1.000000 0.506514 0.383924 0.657790 0.276805 0.205023 0.874650 0.310120 0.656186 ... 0.147096 0.175997 0.769745 0.085604 0.035129 -0.029115 0.146329 0.235299 -0.494043 0.871846
V2 0.463643 0.506514 1.000000 0.410148 0.057697 0.615938 0.477114 0.703431 0.346006 0.059941 ... -0.275764 0.175943 0.653764 0.033942 0.050309 -0.025620 0.043648 0.316462 -0.734956 0.638878
V3 0.409576 0.383924 0.410148 1.000000 0.315046 0.233896 0.197836 0.411946 0.321262 0.306397 ... 0.117610 0.043966 0.421954 -0.092423 -0.007159 -0.031898 0.080034 0.324475 -0.229613 0.512074
V4 0.781212 0.657790 0.057697 0.315046 1.000000 -0.117529 -0.052370 0.449542 0.141129 0.927685 ... 0.659093 0.022807 0.447016 -0.026186 0.062367 0.028659 0.100010 0.113609 -0.031054 0.603984
V6 0.189267 0.276805 0.615938 0.233896 -0.117529 1.000000 0.917502 0.468233 0.415660 -0.087312 ... -0.467980 0.188907 0.546535 0.144550 0.054210 -0.002914 0.044992 0.433804 -0.404817 0.370037
V7 0.141294 0.205023 0.477114 0.197836 -0.052370 0.917502 1.000000 0.389987 0.310982 -0.036791 ... -0.311363 0.170113 0.475254 0.122707 0.034508 -0.019103 0.111166 0.340479 -0.292285 0.287815
V8 0.794013 0.874650 0.703431 0.411946 0.449542 0.468233 0.389987 1.000000 0.419703 0.420557 ... -0.011091 0.150258 0.878072 0.038430 0.026843 -0.036297 0.179167 0.326586 -0.553121 0.831904
V10 0.298443 0.310120 0.346006 0.321262 0.141129 0.415660 0.310982 0.419703 1.000000 0.140462 ... -0.105042 -0.036705 0.560213 -0.093213 0.016739 -0.026994 0.026846 0.922190 -0.045851 0.394767
V12 0.751830 0.656186 0.059941 0.306397 0.927685 -0.087312 -0.036791 0.420557 0.140462 1.000000 ... 0.666775 0.028866 0.441963 -0.007658 0.046674 0.010122 0.081963 0.112150 -0.054827 0.594189
V13 0.185144 0.157518 0.204762 -0.003636 0.075993 0.138367 0.110973 0.153299 -0.059553 0.098771 ... 0.008235 0.027328 0.113743 0.130598 0.157513 0.116944 0.219906 -0.024751 -0.379714 0.203373
V14 -0.004144 -0.006268 -0.106282 -0.232677 0.023853 0.072911 0.163931 0.008138 -0.077543 0.020069 ... 0.056814 -0.004057 0.010989 0.106581 0.073535 0.043218 0.233523 -0.086217 0.010553 0.008424
V15 0.314520 0.164702 -0.224573 0.143457 0.615704 -0.431542 -0.291272 0.018366 -0.046737 0.642081 ... 0.951314 -0.111311 0.011768 -0.104618 0.050254 0.048602 0.100817 -0.051861 0.245635 0.154020
V16 0.347357 0.435606 0.782474 0.394517 0.023818 0.847119 0.752683 0.680031 0.546975 0.025736 ... -0.342210 0.154794 0.778538 0.041474 0.028878 -0.054775 0.082293 0.551880 -0.420053 0.536748
V18 0.148622 0.123862 0.132105 0.022868 0.136022 0.110570 0.098691 0.093682 -0.024693 0.119833 ... 0.053958 0.470341 0.079718 0.411967 0.512139 0.365410 0.152088 0.019603 -0.181937 0.170721
V19 -0.100294 -0.092673 -0.161802 -0.246008 -0.205729 0.215290 0.158371 -0.144693 0.074903 -0.148319 ... -0.205409 0.100133 -0.131542 0.144018 -0.021517 -0.079753 -0.220737 0.087605 0.012115 -0.114976
V20 0.462493 0.459795 0.298385 0.289594 0.291309 0.136091 0.089399 0.412868 0.207612 0.271559 ... 0.016233 0.086165 0.326863 0.050699 0.009358 -0.000979 0.048981 0.161315 -0.322006 0.444965
V21 -0.029285 -0.012911 -0.030932 0.114373 0.174025 -0.051806 -0.065300 -0.047839 0.082288 0.144371 ... 0.157097 -0.077945 0.053025 -0.159128 -0.087561 -0.053707 -0.199398 0.047340 0.315470 -0.010063
V23 0.231136 0.222574 0.065509 0.081374 0.196530 0.069901 0.125180 0.174124 -0.066537 0.180049 ... 0.116122 0.363963 0.129783 0.367086 0.183666 0.196681 0.635252 -0.035949 -0.187582 0.226331
V24 -0.324959 -0.233556 0.010225 -0.237326 -0.529866 0.072418 -0.030292 -0.136898 -0.029420 -0.550881 ... -0.642370 0.033532 -0.202097 0.060608 -0.134320 -0.095588 -0.243738 -0.041325 -0.137614 -0.264815
V25 -0.200706 -0.070627 0.481785 -0.100569 -0.444375 0.438610 0.316744 0.173320 0.079805 -0.448877 ... -0.575154 0.088238 0.201243 0.065501 -0.013312 -0.030747 -0.093948 0.069302 -0.246742 -0.019373
V26 -0.125140 -0.043012 0.035370 -0.027685 -0.080487 0.106055 0.160566 0.015724 0.072366 -0.124111 ... -0.133694 -0.057247 0.062879 -0.004545 -0.034596 0.051294 0.085576 0.064963 0.010880 -0.046724
V27 0.733198 0.824198 0.726250 0.392006 0.412083 0.474441 0.424185 0.901100 0.246085 0.374380 ... -0.032772 0.208074 0.790239 0.095127 0.030135 -0.036123 0.159884 0.226713 -0.617771 0.812585
V29 0.302145 0.147096 -0.275764 0.117610 0.659093 -0.467980 -0.311363 -0.011091 -0.105042 0.666775 ... 1.000000 -0.122817 -0.004364 -0.110699 0.035272 0.035392 0.078588 -0.099309 0.285581 0.123329
V30 0.156968 0.175997 0.175943 0.043966 0.022807 0.188907 0.170113 0.150258 -0.036705 0.028866 ... -0.122817 1.000000 0.114318 0.695725 0.083693 -0.028573 -0.027987 0.006961 -0.256814 0.187311
V31 0.675003 0.769745 0.653764 0.421954 0.447016 0.546535 0.475254 0.878072 0.560213 0.441963 ... -0.004364 0.114318 1.000000 0.016782 0.016733 -0.047273 0.152314 0.510851 -0.357785 0.750297
V32 0.050951 0.085604 0.033942 -0.092423 -0.026186 0.144550 0.122707 0.038430 -0.093213 -0.007658 ... -0.110699 0.695725 0.016782 1.000000 0.105255 0.069300 0.016901 -0.054411 -0.162417 0.066606
V33 0.056439 0.035129 0.050309 -0.007159 0.062367 0.054210 0.034508 0.026843 0.016739 0.046674 ... 0.035272 0.083693 0.016733 0.105255 1.000000 0.719126 0.167597 0.031586 -0.062715 0.077273
V34 -0.019342 -0.029115 -0.025620 -0.031898 0.028659 -0.002914 -0.019103 -0.036297 -0.026994 0.010122 ... 0.035392 -0.028573 -0.047273 0.069300 0.719126 1.000000 0.233616 -0.019032 -0.006854 -0.006034
V35 0.138933 0.146329 0.043648 0.080034 0.100010 0.044992 0.111166 0.179167 0.026846 0.081963 ... 0.078588 -0.027987 0.152314 0.016901 0.167597 0.233616 1.000000 0.025401 -0.077991 0.140294
V36 0.231417 0.235299 0.316462 0.324475 0.113609 0.433804 0.340479 0.326586 0.922190 0.112150 ... -0.099309 0.006961 0.510851 -0.054411 0.031586 -0.019032 0.025401 1.000000 -0.039478 0.319309
V37 -0.494076 -0.494043 -0.734956 -0.229613 -0.031054 -0.404817 -0.292285 -0.553121 -0.045851 -0.054827 ... 0.285581 -0.256814 -0.357785 -0.162417 -0.062715 -0.006854 -0.077991 -0.039478 1.000000 -0.565795
target 0.873212 0.871846 0.638878 0.512074 0.603984 0.370037 0.287815 0.831904 0.394767 0.594189 ... 0.123329 0.187311 0.750297 0.066606 0.077273 -0.006034 0.140294 0.319309 -0.565795 1.000000

33 rows × 33 columns

1
2
3
4
5
# 画出相关性热力图
ax = plt.subplots(figsize=(20, 16))#调整画布大小

ax = sns.heatmap(train_corr, vmax=.8, square=True, annot=True)
#画热力图 annot=True 显示系数


png

1
2
3
4
5
6
7
8
9
10
11
# 找出相关程度
data_train1 = train_data.drop(['V5','V9','V11','V17','V22','V28'],axis=1)

plt.figure(figsize=(20, 16)) # 指定绘图对象宽度和高度
colnm = data_train1.columns.tolist() # 列表头
mcorr = data_train1[colnm].corr(method="spearman") # 相关系数矩阵,即给出了任意两个变量之间的相关系数
mask = np.zeros_like(mcorr, dtype=np.bool) # 构造与mcorr同维数矩阵 为bool型
mask[np.triu_indices_from(mask)] = True # 角分线右侧为True
cmap = sns.diverging_palette(220, 10, as_cmap=True) # 返回matplotlib colormap对象
g = sns.heatmap(mcorr, mask=mask, cmap=cmap, square=True, annot=True, fmt='0.2f') # 热力图(看两两相似度)
plt.show()


png

上图为所有特征变量和target变量两两之间的相关系数,由此可以看出各个特征变量V0-V37之间的相关性以及特征变量V0-V37与target的相关性。

查找出特征变量和target变量相关系数大于0.5的特征变量

1
2
3
4
5
6
7
8
9
10
11
#寻找K个最相关的特征信息
k = 10 # number of variables for heatmap
cols = train_corr.nlargest(k, 'target')['target'].index

cm = np.corrcoef(train_data[cols].values.T)
hm = plt.subplots(figsize=(10, 10))#调整画布大小
#hm = sns.heatmap(cm, cbar=True, annot=True, square=True)
#g = sns.heatmap(train_data[cols].corr(),annot=True,square=True,cmap="RdYlGn")
hm = sns.heatmap(train_data[cols].corr(),annot=True,square=True)

plt.show()


png

1
2
3
4
5
6
7
threshold = 0.5

corrmat = train_data.corr()
top_corr_features = corrmat.index[abs(corrmat["target"])>threshold]
plt.figure(figsize=(10,10))
g = sns.heatmap(train_data[top_corr_features].corr(),annot=True,cmap="RdYlGn")


png

1
2
drop_columns.clear()
drop_columns = ['V5','V9','V11','V17','V22','V28']
1
2
3
4
5
6
7
# Threshold for removing correlated variables
threshold = 0.5

# Absolute value correlation matrix
corr_matrix = data_train1.corr().abs()
drop_col=corr_matrix[corr_matrix["target"]<threshold].index
#data_all.drop(drop_col, axis=1, inplace=True)

由于’V14’, ‘V21’, ‘V25’, ‘V26’, ‘V32’, ‘V33’, 'V34’特征的相关系数值小于0.5,故认为这些特征与最终的预测target值不相关,删除这些特征变量;

1
2
3
4
5
6
7
8
9
10
#merge train_set and test_set
train_x = train_data.drop(['target'], axis=1)

#data_all=pd.concat([train_data,test_data],axis=0,ignore_index=True)
data_all = pd.concat([train_x,test_data])


data_all.drop(drop_columns,axis=1,inplace=True)
#View data
data_all.head()
V0 V1 V2 V3 V4 V6 V7 V8 V10 V12 ... V27 V29 V30 V31 V32 V33 V34 V35 V36 V37
0 0.566 0.016 -0.143 0.407 0.452 -1.812 -2.360 -0.436 -0.940 -0.073 ... 0.168 0.136 0.109 -0.615 0.327 -4.627 -4.789 -5.101 -2.608 -3.508
1 0.968 0.437 0.066 0.566 0.194 -1.566 -2.360 0.332 0.188 -0.134 ... 0.338 -0.128 0.124 0.032 0.600 -0.843 0.160 0.364 -0.335 -0.730
2 1.013 0.568 0.235 0.370 0.112 -1.367 -2.360 0.396 0.874 -0.072 ... 0.326 -0.009 0.361 0.277 -0.116 -0.843 0.160 0.364 0.765 -0.589
3 0.733 0.368 0.283 0.165 0.599 -1.200 -2.086 0.403 0.011 -0.014 ... 0.277 0.015 0.417 0.279 0.603 -0.843 -0.065 0.364 0.333 -0.112
4 0.684 0.638 0.260 0.209 0.337 -1.073 -2.086 0.314 -0.251 0.199 ... 0.332 0.183 1.078 0.328 0.418 -0.843 -0.215 0.364 -0.280 -0.028

5 rows × 32 columns

1
2
3
4
5
6
7
8
# normalise numeric columns
cols_numeric=list(data_all.columns)

def scale_minmax(col):
return (col-col.min())/(col.max()-col.min())

data_all[cols_numeric] = data_all[cols_numeric].apply(scale_minmax,axis=0)
data_all[cols_numeric].describe()
V0 V1 V2 V3 V4 V6 V7 V8 V10 V12 ... V27 V29 V30 V31 V32 V33 V34 V35 V36 V37
count 4813.000000 4813.000000 4813.000000 4813.000000 4813.000000 4813.000000 4813.000000 4813.000000 4813.000000 4813.000000 ... 4813.000000 4813.000000 4813.000000 4813.000000 4813.000000 4813.000000 4813.000000 4813.000000 4813.000000 4813.000000
mean 0.694172 0.721357 0.602300 0.603139 0.523743 0.748823 0.745740 0.715607 0.348518 0.578507 ... 0.881401 0.388683 0.589459 0.792709 0.628824 0.458493 0.483790 0.762873 0.332385 0.545795
std 0.144198 0.131443 0.140628 0.152462 0.106430 0.132560 0.132577 0.118105 0.134882 0.105088 ... 0.128221 0.133475 0.130786 0.102976 0.155003 0.099095 0.101020 0.102037 0.127456 0.150356
min 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 ... 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
25% 0.626676 0.679416 0.514414 0.503888 0.478182 0.683324 0.696938 0.664934 0.284327 0.532892 ... 0.888575 0.292445 0.550092 0.761816 0.562461 0.409037 0.454490 0.727273 0.270584 0.445647
50% 0.729488 0.752497 0.617072 0.614270 0.535866 0.774125 0.771974 0.742884 0.366469 0.591635 ... 0.916015 0.375734 0.594428 0.815055 0.643056 0.454518 0.499949 0.800020 0.347056 0.539317
75% 0.790195 0.799553 0.700464 0.710474 0.585036 0.842259 0.836405 0.790835 0.432965 0.641971 ... 0.932555 0.471837 0.650798 0.852229 0.719777 0.500000 0.511365 0.800020 0.414861 0.643061
max 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 ... 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000

8 rows × 32 columns

1
2
3
4
5
6
7
#col_data_process = cols_numeric.append('target')
train_data_process = train_data[cols_numeric]
train_data_process = train_data_process[cols_numeric].apply(scale_minmax,axis=0)

test_data_process = test_data[cols_numeric]
test_data_process = test_data_process[cols_numeric].apply(scale_minmax,axis=0)

1
2
cols_numeric_left = cols_numeric[0:13]
cols_numeric_right = cols_numeric[13:]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
## Check effect of Box-Cox transforms on distributions of continuous variables

train_data_process = pd.concat([train_data_process, train_data['target']], axis=1)

fcols = 6
frows = len(cols_numeric_left)
plt.figure(figsize=(4*fcols,4*frows))
i=0

for var in cols_numeric_left:
dat = train_data_process[[var, 'target']].dropna()

i+=1
plt.subplot(frows,fcols,i)
sns.distplot(dat[var] , fit=stats.norm);
plt.title(var+' Original')
plt.xlabel('')

i+=1
plt.subplot(frows,fcols,i)
_=stats.probplot(dat[var], plot=plt)
plt.title('skew='+'{:.4f}'.format(stats.skew(dat[var])))
plt.xlabel('')
plt.ylabel('')

i+=1
plt.subplot(frows,fcols,i)
plt.plot(dat[var], dat['target'],'.',alpha=0.5)
plt.title('corr='+'{:.2f}'.format(np.corrcoef(dat[var], dat['target'])[0][1]))

i+=1
plt.subplot(frows,fcols,i)
trans_var, lambda_var = stats.boxcox(dat[var].dropna()+1)
trans_var = scale_minmax(trans_var)
sns.distplot(trans_var , fit=stats.norm);
plt.title(var+' Tramsformed')
plt.xlabel('')

i+=1
plt.subplot(frows,fcols,i)
_=stats.probplot(trans_var, plot=plt)
plt.title('skew='+'{:.4f}'.format(stats.skew(trans_var)))
plt.xlabel('')
plt.ylabel('')

i+=1
plt.subplot(frows,fcols,i)
plt.plot(trans_var, dat['target'],'.',alpha=0.5)
plt.title('corr='+'{:.2f}'.format(np.corrcoef(trans_var,dat['target'])[0][1]))


png

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
## Check effect of Box-Cox transforms on distributions of continuous variables


fcols = 6
frows = len(cols_numeric_right)
plt.figure(figsize=(4*fcols,4*frows))
i=0

for var in cols_numeric_right:
dat = train_data_process[[var, 'target']].dropna()

i+=1
plt.subplot(frows,fcols,i)
sns.distplot(dat[var] , fit=stats.norm);
plt.title(var+' Original')
plt.xlabel('')

i+=1
plt.subplot(frows,fcols,i)
_=stats.probplot(dat[var], plot=plt)
plt.title('skew='+'{:.4f}'.format(stats.skew(dat[var])))
plt.xlabel('')
plt.ylabel('')

i+=1
plt.subplot(frows,fcols,i)
plt.plot(dat[var], dat['target'],'.',alpha=0.5)
plt.title('corr='+'{:.2f}'.format(np.corrcoef(dat[var], dat['target'])[0][1]))

i+=1
plt.subplot(frows,fcols,i)
trans_var, lambda_var = stats.boxcox(dat[var].dropna()+1)
trans_var = scale_minmax(trans_var)
sns.distplot(trans_var , fit=stats.norm);
plt.title(var+' Tramsformed')
plt.xlabel('')

i+=1
plt.subplot(frows,fcols,i)
_=stats.probplot(trans_var, plot=plt)
plt.title('skew='+'{:.4f}'.format(stats.skew(trans_var)))
plt.xlabel('')
plt.ylabel('')

i+=1
plt.subplot(frows,fcols,i)
plt.plot(trans_var, dat['target'],'.',alpha=0.5)
plt.title('corr='+'{:.2f}'.format(np.corrcoef(trans_var,dat['target'])[0][1]))


png

上一篇:
基于XGBoost的分类预测
下一篇:
Mahout简介
本文目录
本文目录